Abstract

P-printable sets were defined by Hartmanis and Yesha and have been investigated by several researchers. The analogous notion of L-printable sets was defined by Fortnow et al; both P-printability and L-printability were shown to be related to notions of resource-bounded Kolmogorov complexity. NL-printability was defined by Jenner and Kirsig, but some basic questions regarding this notion were left open. In this paper we answer a question of Jenner and Kirsig by providing a machine-based characterization of the NL-printable sets.

In order to relate NL-printability to resource-bounded Kolmogorov complexity, the paper introduces nondeterministic space-bounded Kolmogorov complexity. We present some of the basic properties of this notion of Kolmogorov complexity.

Using similar techniques, we investigate relationships among classes between NL and UL.

1 Introduction

By definition, machines with small space bounds have limited memory. In particular, they cannot remember where they have been, in the sense that a (nondeterministic) logspace-bounded machine that is searching a graph
cannot in general remember the nodes that have been visited, and it cannot always reproduce the exact path that led it to the current node.

In this paper we present a simple trick that sometimes allows NL machines to perform feats of memory. Stated another way, we show that short descriptions are often sufficient for NL machines to reproduce large objects of interest. Although the technique is not really new – it is more than two decades old, and was used again recently to prove results about time-bounded Kolmogorov complexity [BFL02] – it seems that its usefulness in NL is not as widely known as it should be.

A more general goal of this paper is to examine different notions of space-bounded Kolmogorov complexity and present some applications of these notions.

The original goal of this work was to improve our understanding of nondeterministic logspace (NL). Thus, before we introduce space-bounded Kolmogorov complexity, let us review the relevant background about NL.

\section{Preliminaries and Motivation}

Many of the observations in this paper are motivated by the desire to prove a collapse of some complexity classes between NL and UL. (UL is “unambiguous” logspace; more formal definitions appear below.) It was observed in [ARZ99] that the nonuniform collapse NL/poly = UL/poly of [RA00] holds also in the uniform case under a very plausible hypothesis. Namely, NL = UL if there is a set in DSPACE(n) that has exponential “hardness” in the sense of [NW94]. More recently, it has been pointed out by [KvM02] that this same conclusion can be weakened to a worst-case circuit lower bound. That is, NL = UL if there is a set in DSPACE(n) (such as SAT, for example) that requires circuits of size $2^{\epsilon n}$, for some $\epsilon > 0$.

So almost certainly it is the case that NL and UL are equal, and thus all of the various complexity classes between NL and UL are certainly equal, and thus surely it should be possible to actually prove (unconditionally) that some of these classes coincide in the uniform setting. There are several classes that were defined in [BJLR91] that lie between NL and UL, but unfortunately this paper cannot present any new collapse among these classes. Nonetheless, it will be necessary for the reader to know what some of these classes are, and thus we have the following list of definitions.

For a nondeterministic Turing machine M, the function $\#acc_M : \{0,1\}^* \rightarrow \mathbb{N}$ is defined so that $\#acc_M(x)$ is the number of accepting computations of M on input x. The reader is assumed to be familiar with deterministic and
nondeterministic logspace (L and NL, respectively). UL is the class of languages accepted by NL machines M that satisfy the restriction that, for all x, $\#acc_M(x) \leq 1$. FewL is the class of languages\(^1\) accepted by NL machines M that satisfy the restriction that, for all x, $\#acc_M(x) = |x|^{O(1)}$.

We will also need to consider space bounds other than logarithmic; in particular we will be interested in linear space bounds. The reader should be familiar with $\text{DSPACE}(n)$ and $\text{NSPACE}(n)$, and (by analogy with UL) $\text{USPACE}(n)$ is the class of languages accepted by NSPACE(n) machines M such that, for all x, $\#acc_M(x) \leq 1$. FewSPACE(n) is the class of languages in NSPACE(n) accepted by machines M that satisfy the restriction that, for all x, $\#acc_M(x) = 2^{O(|x|)}$. In the likely case that NL = UL, it follows that USPACE(n) = FewSPACE(n) = NSPACE(n). Conceivably, proving equality at the linear-space level could be easier than proving equality of the corresponding logspace classes.

One other subclass of NL that needs to be mentioned is RL (randomized logspace); a language A is in RL if and only if there is a nondeterministic logspace machine accepting A and making a nondeterministic choice on each step, with the additional property that if $x \in A$ then at least half of the sequences of nondeterministic choices lead to an accepting state. The class $\text{RSPACE}(n)$ is defined analogously. Just as it is conjectured that UL = NL, there is a popular conjecture that RL = L. (For example, see [Sak96].) This would imply $\text{RSPACE}(n) = \text{DSPACE}(n)$.

We also need a logspace-analog of the complexity class Few of [CH90]: the class LFew (which was called LogFew in [AR98]) is the set of all languages A such that there is an NL machine M with the property that for all x, $\#acc_M(x) = |x|^{O(1)}$, and there is a language $B \in L$ such that $x \in A$ if and only if $(x, \#acc_M(x)) \in B$. It is not immediately obvious that LFew is contained in NL. This containment was shown first in the nonuniform setting in [AR98], and then in [AZ98] a derandomization argument was used to show $\text{LFew} \subseteq \text{NL}$. Shortly thereafter, a very simple hashing argument was used in [ARZ99] to prove this same inclusion. It is this same simple hashing argument that will be used over and over again in this note. It relies on the following fact:

\(^1\)Here we are using the name that was used by [BJLR91] to refer to this class. A possible point of confusion is that this same class was called FewNL in [AR98]. The name FewNL was originally used by [BDHM91] to refer to a related class that is called FewUL by [BJLR91]. The interested reader is referred to [BJLR91] for definitions; we will not need to refer further to those classes here, and hence we omit the definitions. (The uninterested reader can simply remember that all of these classes are almost certainly just different names for NL.)
Theorem 1 ([FKS82][Lemma 2], [Meh82][Theorem B]) Let S be a set of $n^{O(1)}$ n-bit strings (viewed as n-bit numbers). There is some prime number p with $O(\log n)$ bits such that for any $x \neq y$ in S, $x \not\equiv y \pmod{p}$.

3 Nondeterministic Kolmogorov Complexity

One of the goals of this paper is to relate NL-printability to resource-bounded Kolmogorov complexity. It is not immediately obvious how to define the appropriate notion of nondeterministic space-bounded Kolmogorov complexity. In this section, we present some alternative definitions, and show that they are all (roughly) equivalent.

First, it is necessary to give some background on deterministic Kolmogorov complexity.

3.1 Background on Kolmogorov Complexity

The basic theory of Kolmogorov complexity (see, for example [LV97]) yields a very nice measure of the “randomness” of a string x, but it suffers from the defect that this measure is not computable. This has motivated several different approaches to the task of defining resource-bounded versions of Kolmogorov complexity. (Again, a good survey of this material can be found in [LV97]. See also [For04].) The approach that we will follow is based on a definition of Levin [Lev84] as extended and adapted to other complexity measures in [All01, ABK+02, AKRR03].

First, we present (an equivalent restatement of) Levin’s K_t measure, along with the deterministic time- and space-bounded Kolmogorov measures K_T and K_S of [All01, ABK+02], as reformulated in [AKRR03].

Definition 1 Let U be a deterministic Turing machine.

$$K_t_U(x) = \min \{|d| + \log t : \forall b \in \{0, 1, *\} \forall i \leq n + 1 \ U(d, i, b) \text{ runs in time } t \text{ and accepts iff } x_i = b\}$$

$$K_S_U(x) = \min \{|d| + s : \forall b \in \{0, 1, *\} \forall i \leq n + 1 \ U(d, i, b) \text{ runs in space } s \text{ and accepts iff } x_i = b\}$$

$$K_T_U(x) = \min \{|d| + t : \forall b \in \{0, 1, *\} \forall i \leq n + 1 \ U(d, i, b) \text{ runs in time } t \text{ and accepts iff } x_i = b\}$$

Here, we say that $x_i = *$ if $i > |x|$.
As usual, we will choose a fixed “optimal” Turing machine U and use the notation K_t, K_S, and K_T to refer to K_{tU}, K_{SU}, and K_{TU}. However, the definition of “optimal” Turing machine depends on the measure under consideration. For instance, U is K_t-optimal if for any Turing machine U' there exists a constant $c \geq 0$ such that for all x, $K_t(x) \leq K_{tU'}(x) + c \log |x|$. Notice that there is an additive logarithmic term instead of the “usual” additive constant. This comes from the slight slow-down that is incurred in the simulation of U' by U. Similarly, U is K_S-optimal if for any Turing machine U' there exists a constant $c > 0$ such that for all x, $K_S(x) \leq c K_{SU'}(x)$, and U is K_T-optimal if for any Turing machine U' there exists a constant $c > 0$ such that for all x, $K_T(x) \leq c K_{TU'}(x) \log K_{TU'}(x)$. The existence of optimal machines for K_t, K_S and K_T complexity follows via standard arguments. The definition of K_T can be relativized to yield a measure K_{T^A} by providing the universal Turing machine U with access to oracle A. It was shown by Ronneburger (see [All01]) that there are optimal machines such that, for any languages A and B complete for $\text{DTIME}(2^n)$ and $\text{DSPACE}(n)$, respectively, it holds that

- $K_t(x) + \log |x| = \Theta(K_{T^A}(x) + \log |x|)$.
- $K_S(x) + \log |x| = \Theta(K_{T^B}(x) + \log |x|)$.

Part of the motivation for the K_T measure comes from the fact that if x is a string encoding the truth-table of a Boolean function f (on circuits with oracle A) is polynomially-related to $K_T(x)$ (respectively to $K_{T^A}(x)$) [All01]. Thus the K_t and K_S measures are polynomially-related to oracle circuit size, where the oracle comes from exponential time or linear space, respectively.

3.2 Nondeterministic Space-Bounded K-Complexity

Now, following the model of [AKRR03], let us introduce a nondeterministic analog of K-complexity.

Definition 2 Let U be a fixed nondeterministic Turing machine.

$$K_{NSU}(x) = \min\{ |d| + s : \forall b \in \{0, 1, \ast\} \forall i \leq n + 1 \ U(d, i, b) \text{ runs in space } s \text{ and accepts iff } x_i = b \}$$

As above, we define K_{NS} to be K_{NSU}, for some machine U such that for all U', we have $K_{NSU}(x) \leq c \cdot K_{NSU'}(x)$ for some constant c.

5
3.3 Distinguishing Complexity

One of the first types of resource-bounded Kolmogorov complexity to be studied was “distinguishing” complexity. For more on the history of this notion, see [BFL02]. In [AKRR03] a version of distinguishing complexity was introduced that has the same flavor as Levin’s Kt measure:

Definition 3 Let U be a deterministic Turing machine. Define $K_{D_t}U(x)$ to be $\min \{|d| + \log t : \forall y \in \Sigma^{|x|} U(d, y) \text{ runs in time } t \text{ and accepts iff } x = y\}$

Again, we have to be careful about the properties we require of the optimal Turing machine. We define K_{D_t} as $K_{D_t}U$, such that for all U', we have $K_{D_t}U(x) \leq K_{D_t}U'(x) + c \log |x|$ for some constant c. Note that in fact we can assume without loss of generality that this machine U has only one-way access to its input y. For our space-bounded versions of distinguishing complexity, we will need to impose this restriction. We emphasize this restriction on the way we access our input by adding an “arrow” to our notation.

Definition 4 Let U_1 be a fixed nondeterministic Turing machine, and let U_2 be a fixed deterministic Turing machine. We consider only Turing machines with two input tapes (one containing d and one containing y), where the machines have only one-way access to the tape containing y.

$$K_{D_S}U_1(x) = \min\{|d| + s : \forall y \in \Sigma^{|x|} U_1(d, y) \text{ runs in space } s \text{ and accepts iff } x = y\}$$

$$K_{D_S}U_2(x) = \min\{|d| + s : \forall y \in \Sigma^{|x|} U_2(d, y) \text{ runs in space } s \text{ and accepts iff } x = y\}$$

Again, we define K_{D_S} and K_{D_S} in terms of optimal Universal Turing machines, satisfying the conditions $K_{D_S}U_1(x) = O(K_{D_S}U_1(x))$ and $K_{D_S}(x) = O(K_{D_S}U_2(x))$ as usual.

3.4 Robustness of KNS

The first important observation is that several of these definitions are essentially equivalent to each other.

Proposition 2 The following functions are in the same Θ-equivalence class. Thus they are more-or-less interchangeable (and in the rest of the paper we will refer primarily to KNS).
\begin{itemize}
 \item $\text{KT}^A(x) + \log |x|$ where A is any set complete for $\text{NSPACE}(n)$ under linear-time reductions.
 \item $\text{KNS}(x) + \log |x|.$
 \item $\text{KNDS}(x) + \log |x|.$
\end{itemize}

Proof. Let $\text{KT}^A(x) = m$. Thus there is a description d with $|d| \leq m$ such that, for all $i \leq |x| + 1$, $U^A(d, i, b)$ runs in time $t \leq m$ and accepts iff $x_i = b$. Note that all queries to the oracle A must have length at most m. In order to bound $\text{KNS}(x)$, observe that a nondeterministic machine M, given input (d, i, b), can simulate $U^A(d, i, b)$ by guessing the answers to the oracle, and then checking that each guess is correct (using the fact that $\text{NSPACE}(n)$ is closed under complement \cite{Imm88, Sze88}). The space required for this simulation is $O(m)$, which shows that, for this machine M, $\text{KNS}_M(x) = O(m)$. By the properties of optimal machines, we conclude that $\text{KNS}(x) = O(m)$, and thus $\text{KNS}(x) = O(\text{KT}^A(x))$. (Observe that this bound holds, no matter which machine we use in defining $\text{KT}^A(x).$)

Next, assume $\text{KNS}(x) = m$. Thus there is some description d of length at most m, such that, for all $i \leq |x| + 1$, the nondeterministic machine $U(d, i, b)$ runs uses space $\leq m$ and accepts iff $x_i = b$. In order to bound $\text{KNDS}(x)$, observe that we can design a machine M that, on input (d, y), M simulates $U(d, i, y_i)$ for each $i \leq |y|$ and continues on to the next value of i only if an accepting computation is detected. Clearly, the only string of length $|x|$ that will be accepted in this way is x itself, and the machine reads the string y only from left to right. The space required is bounded by $m + O(\log |y|)$. Hence $\text{KNDS}(x) = O(\text{KNS}(x) + \log |x|)$.

Finally, let $\text{KNDS}(x) = m$. Thus there is a description d with length at most m such that the only string y of length $n = |x|$ such that $U(d, y)$ accepts is x, and this computation uses space at most m, where furthermore the nondeterministic machine U reads the string y only from left to right. Note that the set $B = \{(1^n0r, d', i, b) : \exists z \in \Sigma^r, z_i = b \& U(d', z) \text{ accepts in space at most } m\}$ is in $\text{NSPACE}(n)$, because using space m (which is linear in the length of the input) a nondeterministic machine can guess the successive bits of z as they are processed by U in its left-to-right pass over its input, and simulate the computation of U on this input z. It is now easy to see that a deterministic machine U' with an oracle for B can use the description $d'' = (1^n0m, d)$ and on input (d'', i, b) accept if and only if $x_i = b$. The running time of U' is linear in the length of d'', which is $O(m + \log |x|)$. It follows that $\text{KT}_{U'}^B(x) = O(\text{KNDS}(x) + \log |x|)$.
Putting this last paragraph together with the previous two, it shows that there is at least one set B in $\text{NSPACE}(n)$ and at least one optimal machine U' that we can select to define KT^B, so that $\text{KT}^B_U(x) + \log |x|$, $\text{KNS}(x) + \log |x|$, and $\text{KNS}(x) + \log |x|$ are all in the same Θ-equivalence class, and furthermore, $\text{KNS}(x)$ and $\text{KNS}(x)$ can be bounded in terms of $\text{KT}^B(x)$ no matter which machine is used to define the measure KT^B. We therefore assume that the optimal machine that is selected to define KT^B is a machine for which this equivalence holds. It is now straightforward to see that equivalence also holds for any set A that is complete for $\text{NSPACE}(n)$ under linear-time reductions.

It is worth emphasizing, for clarity, that although we do not know how to guarantee that there is a universal machine U for KT complexity that can simulate all other machines U' with at most linear slow-down, the simple argument above shows that there exists an optimal machine U such that, for any machine U' and any set complete for $\text{NSPACE}(n)$ under linear-time reductions, $\text{KT}^A_U(x) = O(\text{KT}^A_U(x) + \log |x|)$. Hence, linear slow-down can be achieved in the oracle model (up to an additive logarithmic term).

Although this proposition is quite easy to prove, it is worth observing that none of the other resource-bounded Kolmogorov complexity measures studied in [All01, ABK+02, AKRR03] are known to enjoy similar properties. For instance, although K_t is roughly the same thing as KT^A for a language A complete for E, it is observed in [AKRR03] that K_t and K_d are likely to be quite different. Similarly, although [AKRR03] observes that distinguishing complexity coincides with time-bounded K-complexity in the nondeterministic setting, it is not known how to capture this notion in terms of KT^A relative to any oracle A (primarily because nondeterministic time classes are not known to be closed under complement).²

3.5 KNS and the DSPACE vs NSPACE Question

It follows easily from Savitch’s theorem that K_S and K_N are polynomially related.

Proposition 3 $K_N(x) = O(K_S(x))$ and $K_S(x) = O((K_N(x) + \log |x|)^2)$.

²Subsequent to this paper originally being sent to the WoLLIC conference, Dieter van Melkebeek pointed out to the author that $\text{NEXP/poly} = \text{coNEXP/poly}$. A revision of [AKRR03] currently in preparation makes use of this to show that $\text{Kn}(x) + \log |x| = \Theta(\text{KT}^A(x) + \log |x|)$ for any set A that is complete for NE. That is, Kn is essentially as well-behaved in this respect as K_N is.
On the other hand, the question of whether $\text{DSPACE}(s(n))$ is equal to $\text{NSPACE}(s(n))$ is essentially the question of how close KNS and KS are.

To make the connection between Kolmogorov complexity and the DSPACE vs. NSPACE question more explicit, we recall the notions of 1-L and 1-NL computation (originally introduced by Hartmanis, Immerman, and Mahaney [HIM78], and subsequently studied in [HM81, All88, AJMV98, AB96]). We also introduce some measures of the Kolmogorov complexity of a language.

Definition 5 1-L (1-NL) is the class of languages accepted by (nondeterministic) logspace machines where the input head moves only from left to right. (That is, the machine has a one-way input head.) As in [HIM78], we assume that the machine starts its computation on input x with $\log |x|$ space marked out on its worktape.

Proposition 4 Let A be a language in $\text{NSPACE}(n)$ accepted by a nondeterministic machine M running in time c^n, and let d be an integer greater than $\log c + 1$. Let Comp_M be the language $\{w : |w| = x^d$ such that M accepts x along the path given by the sequence of nondeterministic choices $w\}$ (where we use the standard bijection between Σ^* and \mathbb{N} to view x as both a string and a number). Then Comp_M is in 1-L.

Definition 6 Let A be a language and let $K\mu$ be a Kolmogorov complexity measure. We define two measures of the Kolmogorov complexity of A:

$$K\mu_A(n) = \min \{K\mu(x) : |x| = n \text{ and } x \in A\}$$

$$K\mu^A(n) = \max \{K\mu(x) : |x| = n \text{ and } x \in A\}$$

If $A \cap \Sigma^n = \emptyset$ then $K\mu_A(n)$ and $K\mu^A(n)$ are undefined.

The following observations are easy to prove. They are stated here merely to provide some motivation for the preceding definitions. Later in the paper we will add some more conditions to these lists of equivalent statements.

Proposition 5 $\text{NSPACE}(n) = \text{DSPACE}(n)$ if and only if for every $A \in$ 1-L, $\text{KS}_A(n) = O(\log n)$.

Proposition 6 $\text{DSPACE}(n) = \text{USPACE}(n)$ if and only if for each 1-sparse set3 $A \in$ 1-L, $\text{KS}_A(n) = O(\log n)$.

3A set is 1-sparse if it contains at most one string of any given length.
Note that it is immediate that for every 1-sparse set \(A \in 1-L \), \(K\overrightarrow{DS}_A(n) = O(\log n) \). Recall also that the conjectured equality \(NL = UL \) implies that all of the preceding conditions are equivalent.

Let us mention one additional preliminary observation.

Proposition 7 If \(KS_A(n) = O(\log n) \) for every dense \(A \in 1-L \), then \(RSPACE(n) = DSPACE(n) \).

The hypothesis of Proposition 7 is very likely to be true. One of the theorems of [KvM02] shows that under a very plausible hypothesis (that there is a set in \(DSPACE(n) \) that requires branching programs of size \(2^{\epsilon n} \)) there are secure pseudorandom generators computable in logspace that take a seed of length \(O(\log n) \) and produce \(n \) bits of pseudorandom output. In turn, this implies that every dense language in \(A \in L/poly \) has \(KS_A(n) = O(\log n) \) (since otherwise one would obtain a statistical test showing that the pseudorandom generators are not secure). This is a much stronger conclusion than the hypothesis of Proposition 7, because it applies to all \(A \in L/poly \) as opposed to merely applying to those \(A \) in 1-L.

Sets in 1-L and 1-NL are simple enough that we are able to say something nontrivial about their Kolmogorov complexity. This is where we use the hashing lemma.

Theorem 8 Let \(A \in 1-NL \). Then \(KNS_A(n) = O(|A^=n| + \log n) \) and \(KNS_A(n) = O(\log n) \).

Observe that these bounds are essentially optimal (up to constant factors and additive logarithmic terms).

Proof. Let \(A \in 1-NL \), accepted by machine \(M \). Let \(m = |A^=n| \). Let \(B = \{x0^{m-n} : x \in A \} \). By Theorem 1 there is a prime \(p \) of \(O(\log m) \) bits such that all of the strings in \(B \) (and hence all of the strings in \(A^=n \)) are equivalent to different values mod \(p \). Given as a description \((p, j, m, n, M)\) (of length \(O(\log |A^=n| + \log n) \)) and given access to a string \(y \) on a one-way input tape, a nondeterministic machine can simulate the computation of the 1-NL machine \(M \) on input \(y \), simultaneously computing \(y \) mod \(p \), and accepting if and only \(M(y) \) accepts and \(y \) is equivalent to \(j \) mod \(p \). Thus for any string \(x \in A^=n \), \(K\overrightarrow{NS}(x) = O(|A^=n| + \log n) \). The first claim now follows by Proposition 2.

For the second claim, observe first that the language \(\{(n, C) : \text{configuration } C \text{ appears on the lexicographically first accepting computation path of} \} \)

\(^4\)A language is dense if, for each \(n \), \(A \) contains at least half of the strings of length \(n \) or no strings of length \(n \).
\(M \) on an input of length \(n \) can be accepted by a nondeterministic machine in space linear in \(|(n,C)|\). (That is, starting at the initial configuration, check for each successor configuration in turn if it is the first such configuration that appears on an accepting path; use the fact that \(\text{NSPACE}(n) \) is closed under complementation [Imm88, Sze88].) Now observe that the language \(\{(n,i,b) : \text{along the lexicographically first accepting configuration on an input of length } n, \text{ the } i \text{th input symbol that is consumed is a } b \} \) is also in \(\text{NSPACE}(n) \). This clearly shows that \(\text{KT}^B(x) = O(\log n) \) for some \(x \in A^n \) and some \(B \in \text{NSPACE}(n) \). The second claim now follows by Proposition 2.

The proof of the first assertion in Theorem 8 does not make essential use of nondeterminism. A similar proof shows:

Proposition 9 Let \(A \in 1-L \). Then \(\text{KD}^A(n) = O(\log |A^n| + \log n) \).

4 NL-Printability

NL-printability was defined and studied in [JK89] as a generalization of the \(P \)-printable sets that were defined in [HY84] and further studied in [AR88] and elsewhere. The related notion of \(L \)-printability has also been studied [JK89, FGLM99]. In general, for a complexity class \(\mathcal{C} \), a language \(A \) is \(\mathcal{C} \)-printable if there is a function \(f \) computable in \(\mathcal{C} \) (blurring temporarily the distinction between a class of languages and a class of functions) with the property that \(f(0^n) \) is a list of all of the strings in \(A \) that have length at most \(n \). For the cases \(\mathcal{C} \in \{P,L,\text{NL}\} \), this notion is fairly robust to minor changes in the definition (such as having the function \(f \) list only the strings of length exactly \(n \), listing the elements in lexicographical order, etc. [JK89, FGLM99].)

Certainly all \(P \)-printable sets are sparse, but it seems as if not all sparse sets in \(P \) are \(P \)-printable. Indeed, there are sparse sets in \(\text{AC}^0 \) that are not \(P \)-printable if and only if \(\text{FewE} \neq E \) [RRW94]. (See also [AR88].)

When \(\mathcal{C} \) is one of \(\{L,P\} \), it is fairly obvious what is meant by “\(f \) is computable in \(\mathcal{C} \).” However, the reader might be less clear as to what is meant by “\(f \) is computable in NL”. As it turns out, essentially all of the reasonable possibilities are equivalent. Let us denote by \(\text{FNL} \) the class of functions that are computable in \(\text{NL} \); it is shown in [JK89] each of the three following conditions is equivalent to “\(f \in \text{FNL} \).”

1. \(f \) is computed by a logspace machine with an oracle from \(\text{NL} \).
2. \(f \) is computed by a logspace-uniform \(\text{NC}^1 \) circuit family with oracle gates for a language in NL.

3. \(f(x) \) has length bounded by a polynomial in \(|x| \), and the set \(\{(x, i, b) : \text{the } i\text{th bit of } f(x) \text{ is } b \} \) is in NL.

Hence NL-printability is the same as \(\text{L}^\text{GAP} \)-printability, where GAP (the Graph Accessibility Problem) is the standard NL-complete set, and \(\text{L}^A \)-printability is the notion that was studied in [FGLM99], relativized to oracle \(A \).

P-printability and L-printability can be characterized in terms of small time- and space-bounded Kolmogorov complexity. For instance, although it is not stated this way in [FGLM99], \(A \) is L-printable if and only if \(A \in \text{L} \) and \(\text{KS}^A(n) = O(\log n) \). Later in this section we give a similar characterization of NL-printability in terms of KNS-complexity.

A machine-based characterization of the P-printable sets was presented in [AR88]; \(A \) is P-printable if and only if \(A \) is sparse and is accepted by a one-way (deterministic or nondeterministic) logspace-bounded Aux-PDA. (See [AR88] for definitions.) No machine-based characterization of the L-printable sets was presented in [FGLM99], and the results of this section partially explain why. A machine-based characterization of the NL-printable sets was attempted in [JK89], but only a partial characterization was achieved. (It was shown in [JK89] that all NL-printable sets are accepted by 1-NL machines, but it was left open if all sparse sets accepted by 1-NL machines are NL-printable. It was shown only that such sets accepted by 1-UL machines are NL-printable.) The main result of this section is the presentation of a machine-based characterization of the NL-printable sets.

Definition 7 Sets \(A \) and \(B \) (subsets of \(\Sigma^* \)) are said to be NL-isomorphic if there is a bijection \(f \) on \(\Sigma^* \) such that \(A = f(B) \), where both \(f \) and \(f^{-1} \) are in \(\text{FNL} \). (L-isomorphism and P-isomorphism are defined similarly.)

It is convenient to recall a theorem from [FGLM99] relating L-printability and L-isomorphism.

Theorem 10 [FGLM99] If \(A \) and \(B \) are L-printable and have similar densities, then \(A \) and \(B \) are L-isomorphic. (Here, \(A \) and \(B \) are said to have “similar densities” if the lexicographic (order-preserving) isomorphisms from \(A \) to \(B \) and from \(B \) to \(A \) map inputs to strings that are at most polynomially longer. The lexicographic isomorphism is the function that maps the \(i \)-th element of \(A \) (and \(\overline{A} \)) to the \(i \)-th element of \(B \), \(\overline{B} \), respectively.)
The proof of this theorem that is given in [FGLM99] carries over without change to L\textsuperscript{\text{\text{GAP}}}-printability. Thus we obtain the following corollary.

Corollary 11 If A and B are NL-printable and have similar densities, then A and B are NL-isomorphic.

Definition 8 A tally set is a subset of 0*.

Theorem 12 The following are equivalent:

- A is NL-printable.
- A is NL-isomorphic to a tally set in NL.
- A ∈ NL and KNSA(n) = O(log n).
- A is sparse and is accepted by a 1-NL machine.

Proof. Let A be NL-printable. Let B be the set \{0np(n)+i : there are at least i ≥ 1 strings of length n in A\}. We will show that B is in NL. Clearly every tally set in NL is NL-printable, and it is also clear that A and B have similar densities. NL isomorphism now follows by Corollary 11.

B is in NL, because on input 0np(n)+i an NL machine can compute the bits of f(0n) and determine the number j of strings of length n that appear in this list. The NL algorithm should halt and accept if and only if j ≥ i. This shows that the first condition implies the second.

If A is NL-isomorphic to a tally set in B ∈ NL (say, f(A) = B), then clearly A ∈ NL. (On input x, an NL algorithm can determine if f(x) ∈ 0*, and if so, can compute the number i such that f(x) = 0i. Then it is easy to simulate the algorithm for B on 0i.) It is also easy to see that (M, i) is a description of f-1(0i), where M is an encoding of a machine computing f-1, which shows that KNSA(n) = O(log n). This shows that the second condition implies the third.

If A ∈ NL and KNSA(n) = O(log n), then A is NL-printable because we can try all of the small descriptions d and check that the description really is a valid description (i.e., for each i there is exactly one b such that U(d, i, b) accepts), and then determine what string is described by d. Thus the first three conditions are all equivalent.

We have already mentioned that [JK89] showed that every NL-printable set satisfies the fourth condition. Thus it suffices to show that if A is sparse and is accepted by a 1-NL machine M, then A is NL-printable. However, this is immediate from Theorem 8. \qed
Theorem 12 causes us to pose three simple questions:

(1) Can the second condition be improved to show that NL-printable sets are L-isomorphic to tally sets in NL? This seems unlikely, since it would imply that each element of an NL-printable set has small KS complexity, and (as in the proof of Theorem 13 below) it would follow that DSPACE(n) = FewSPACE(n).

(2) Can the second condition be improved to show that NL-printable sets are NL-isomorphic to a tally set in L? This seems unlikely, although certainly all “dense enough” NL-printable sets are NL-isomorphic to 0∗ (which certainly qualifies as a tally set in L), by Corollary 11. However, if we consider a tally set A ∈ NSPACE(2n) (accepted by a machine M running in time, say, 22n), and consider the related set A′ = \{y : |y| = 22n and y encodes a sequence of guesses of M encoding an accepting computation on input 0n\} then note that A′ is in 1-NL (indeed, it is even in 1-L), and thus by Theorem 12 it is NL-printable. If there were a tally set T in L NL-isomorphic (or even polynomial-time-isomorphic) to A′, then A would be in DSPACE(22n), since a deterministic machine could determine if 0n is in A by simply looking to see if there is any string 0i in T, for 2(22n)/k ≤ i ≤ 2k22n. Thus any such improvement would imply an unlikely collapse of very large complexity classes.

(3) It is natural to wonder if perhaps all sparse sets in 1-L are L-printable. This also seems unlikely:

Theorem 13 The following are equivalent:

1. All sparse sets A ∈ 1-L are L-printable (i.e., KS^A(n) = O(log n)).

2. All sparse sets in 1-FewL are L-printable.

3. All sparse sets in 1-FewL are in L.

4. DSPACE(n) = FewSPACE(n).

Remark: The condition that KS(x) = O(K\bar{D}S(x) + log |x|) implies all of the conditions in this theorem, but appears to be slightly stronger. It is equivalent to the condition that for every language A ∈ NSPACE(n) there is a deterministic linear-space procedure that finds an accepting computation for those inputs on which there are few (or even only one) accepting paths.

Proof. (2) trivially implies (1) and (3). Let us show (1) ⇒ (2), (3) ⇒ (4), and (4) ⇒ (1).
(1) ⇒ (2): Let A be a sparse set in 1-FewL, accepted by M. Let B be the set of all strings encoding sequences of configurations of an accepting computation of M. By assumption, B is sparse, and is in 1-L, and thus by hypothesis B is L-printable. Now A is L-printable via a routine that first prints the elements of B, and then extracts, from the sequence of configurations, the strings of A that are accepted by M.

(3) ⇒ (4): This is immediate from standard padding techniques [Boo74].

(4) ⇒ (1): Here again we use the hashing technique. Let A be a sparse set in 1-L, let B be the set $\{1^n0^p1^j : \text{there are at least } j \text{ numbers } i_1, \ldots, i_j \text{ such that there exist words } x_1 \equiv i_1 \text{ (mod } p), \ldots, x_j \equiv i_j \text{ (mod } p) \text{ of length } n \text{ in } A\}$, and let C be the set $\{0^n1^00^1k^b : \text{there is a string } x \text{ in } A^n = \text{ with } x \equiv i \text{ (mod } p), \text{ where the } k^{\text{th}} \text{ bit of } x \text{ is } b\}$. It is easy to see that B and C can be encoded as tally sets in FewL, and by hypothesis all such sets are in L. Now we can L-print A by, on input 0^n, finding a “good” p, (that is, a prime p having the largest j such that $1^n0^p1^j \in B$) and then cycling through all i’s until each x has been printed.

5 Upward Separation

Theorem 13 has the same general flavor of the “upward separation” results of [Har83, HIS85] (see also [Gla01, RRW94]). Upward separation results are of the form “$\mathcal{C}_1 - \mathcal{C}_2$ has no tally sets” if and only if “$\mathcal{C}_1 - \mathcal{C}_2$ has no sparse sets”.

Here are a couple more results with a similar flavor to Theorem 13. The proofs follow along similar lines.

Theorem 14 The following are equivalent:

1. $\text{DSPACE}(n) = \text{NSPACE}(n)$.
2. All sparse sets in 1-NL are in L.
3. All sparse sets in 1-NL are L-printable
4. For all $A \in 1-L$, $\text{KS}_A(n) = O(\log n)$.

Theorem 15 The following are equivalent:

1. $\text{DSPACE}(n) = \text{USPACE}(n)$.
2. All 1-sparse sets in 1-UL are in L.
3. All 1-sparse sets in 1-UL are L-printable.

4. All 1-sparse sets in 1-L are L-printable.

5. For all 1-sparse \(A \in 1-L \), \(KS_A(n) = KS^A(n) = O(KD_SA(n) + \log n) \).

Again, please note that, in the likely case that NL = UL, all of the conditions in the preceding three theorems are equivalent.

6 More Applications of Hashing

The simple hashing technique that was used in the proofs of Theorems 8, 12, and 13 has other applications in classes related to NL. In this section, we present two such applications.

6.1 OptL

The class OptL was defined in [AJ93] to be the class of functions \(f \) such that there is an NL-transducer \(M \) with the property that \(f(x) \) is the lexicographically largest string produced by \(M \) along any accepting computation path on input \(x \). It is known that OptL is contained in AC\(^1\) [\(\ddot{A}J95 \)], and the question is raised in [RA00] if perhaps OptL is equal to FNL (the class of functions computable in NL). The following takes care of an easy special case.

Theorem 16 Let \(f \) be a function in OptL with the property that there is an NL transducer realizing \(f \) that produces at most \(n^{O(1)} \) distinct outputs for any string \(x \) of length \(n \). Then \(f \) is in FNL.

Proof. Again, we use the hashing technique. The set \(A = \{(x, p, i) : \text{there is an output of } M(x) \text{ that is equivalent to } i \mod p \} \) is easily seen to be in NL. As in the proof of Theorem 13, an NL machine can, on input \(x \), find a “good” prime \(p \) by counting, for each prime \(p \), the number of \(i \)'s such that \((x, p, i) \in A \), and selecting \(p \) for which this number is maximized. After a “good” prime \(p \) has been found, an NL machine can then compare, for given \(i \) and \(j \), the individual bits of output strings \(y_i \) and \(y_j \) that are produced by \(M(x) \) that are equivalent to \(i \) and \(j \) (mod \(p \)). In this way, it can determine the lexicographically largest output of \(M \) on input \(x \).

16
6.2 Promise Problems

Lacking a proof of $\text{NL} = \text{UL}$, we have considered the “easier” problem of $\text{DSPACE}(n) = \text{USPACE}(n)$. We have also examined the question of whether “$L = \text{NL}$” is equivalent to “$L = \text{UL}$”, or even whether “$L = \text{FewL}$” is equivalent to “$L = \text{UL}$”. Although we lack even a proof of this latter (modest) conjecture, we can prove that if L contains a solution to the Unique-GAP problem, then $L = \text{FewL}$ (and in fact $L = \text{LFew}$). This is a direct logspace analogue to the fact (proved in [BG92]) that if P contains a solution to the Unique-SAT promise problem, then $P = \text{Few}$. Again, we use the hashing technique.

A solution to the Unique-GAP promise problem is a language A that:

- contains all instances (G, s, t) such that G is a directed acyclic graph with exactly one path from s to t, and

- contains no instances (G, s, t) such that G is a directed acyclic graph with no path from s to t.

If G contains more than one path from s to t, then A may or may not contain (G, s, t).

Observe that the “minimal” solution to the Unique-GAP promise problem (i.e., the language consisting of all triples (G, s, t) such that there is exactly one path from s to t in G) is complete for NL [Lan97]. Of course, there are also nonrecursive solutions to the Unique-GAP promise problem. Although the Unique-GAP problem is the obvious graph-theoretic characterization of UL, it is not known if UL contains any language that is a solution to the Unique-GAP promise problem. Even if UL has a complete set (and we cannot prove that it has a complete set), the existence of such a complete set is not known to imply the existence of a set in UL that is a solution to the Unique-GAP promise problem.

Although it is not known if LFew is contained in L_{UL}, something similar is known to happen. Let $L_{\text{PromiseUL}}$ denote the class of languages A with the property that there is a logspace-bounded oracle Turing machine M such that for any solution B to the Unique-GAP promise problem, M^B accepts A.

Theorem 17 LFew is contained in $L_{\text{PromiseUL}}$.

Proof. Let A be a language in LFew. (That is, there is an NL machine M with the property that for all x, $\#\text{acc}_M(x) = |x|^{O(1)}$, and there is a language $B \in L$ such that $x \in A$ if and only if $(x, \#\text{acc}_M(x)) \in B$. Let C
be a solution to the Unique-GAP promise problem. We define a machine accepting A that uses C as its oracle (and that will also accept A given any other solution C').

On input x, search through all primes p of $O(\log n)$ bits (where the constant in the “big Oh” depends on the language A) to find a prime p that maximizes the value i for which the following is true:

There are at least i values $j_1 < \ldots < j_i$ such that there exists an accepting computation of $M(x)$ that is equivalent to each of these i residues mod p, and furthermore, for each configuration α of M and for each j, if α is on an accepting path of $M(x)$ that is equivalent to $j \mod p$, then there is a successor of α that lies on such a path.

Note that for a “good” prime p, there is a unique way to guess these i residues and a unique path for each residue, and thus once our logspace oracle machine locates a “good” p it will be able to verify that p is good using only queries to the part of C that satisfy the promise. (That is, since the condition above can be tested in NL, the standard reduction to GAP allows us to test the condition using queries to GAP. Since, for a “good” p the condition can be tested by an NL machine with a unique accepting path, this can be tested using queries to GAP that satisfy the promise.)

Once a good prime p has been found, it is clear that $\#\text{acc}_M(x)$ can be computed, and thus membership in A can be determined.

The preceding theorem has somewhat the same flavor as the result of [BF99] regarding “promise RP” – although the analogy is not strong. Although we are unable to show that $L = UL$ implies $L = LFew$, this does seem like a small step in that direction.

7 Conclusion and Open Problems

For any NL machine M and input x, the lexicographically largest (and smallest) accepting path of M on x can be found and computed by an NL machine, using only $O(1)$ additional bits of description. On the other hand, it is not known if there are $n^{O(1)}$ paths that can be found and computed by an NL machine, using only $O(\log n)$ additional bits of description. The hashing technique that is used in this paper does provide for a short description of each such path, if there are no more than $n^{O(1)}$ paths in total.

It might be interesting to find if there is some machine-based characterization of C-printable sets, for other small classes C. It is not too hard to show
that every sparse set that is accepted by a uniform read-once bounded-width branching program is L-printable. (Sketch: for each of the $O(1)$ nodes v at level i, compute the number of paths from s to v and from v to t. This enables a logspace machine to take a number j and compute the jth accepting path in the branching program, and to output the input variables that cause this path to be followed.) It is not clear if this computation can be performed in Boolean NC1, and it is even less clear that every NC1-printable set (or even every AC0-printable set) can be accepted by read-once bounded-width branching programs.

Is OptL = FNL (at least in the nonuniform setting)? Can new relationships be proved among the classes \{UL, FewUL, FewL, LFew, NL\} in the uniform setting?

Acknowledgments

I thank Vladimir Glasnak, Sunny Daniels, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and Samir Datta for helpful conversations. I thank the referees for their helpful comments.

References

